Selecting a Motor: Formula for Inertia J [kg·m2]

Formula for the Inertia

Inertia of a Cylinder

Inertia of a Cylinder

Inertia of a Hollow Cylinder

Inertia of a Hollow Cylinder

Inertia on Off-Center Axis

Inertia on Off-Center Axis

Inertia of a Rectangular Pillar

Inertia of a Rectangular Pillar

Inertia of an Object in Linear Motion

\(\begin{align} J=m\left(\frac{A}{2 \pi} \right)^2\ [\mathrm{kg} \cdot \mathrm{m^2}] \hspace{25pt}{A}: \text{Unit movement}[\mathrm{m/rev}] \end{align}\)

Conversion Formula for the Inertia of the Motor Shaft When Using a Speed Reduction Mechanism

\(\begin{align} Jm=\frac{1}{i^2} {J_L} \end{align}\)
Conversion Formula for the Inertia of the Motor Shaft When Using a Speed Reduction Mechanism

Formula for the Relationship Between J and GD2

\(\begin{align} J=\frac{1}{4} {GD}^2 \end{align}\)

Density

Stainless Steel (SUS304)
ρ = 8.0 × 103 [kg/m3]
Iron
ρ = 7.9 × 103 [kg/m3]
Aluminum
ρ = 2.8 × 103 [kg/m3]
Brass
ρ = 8.5 × 103 [kg/m3]
Nylon
ρ = 1.1 × 103 [kg/m3]
Jx
Inertia on x Axis [kg·m2]
Jy
Inertia on y Axis [kg·m2]
Jx0
Inertia on x0-Axis (Centered axis) [kg·m2]
m
Mass [kg]
D1
Outer Diameter [m]
D2
Inner Diameter [m]
ρ
Density [kg/m3]
L
Length [m]